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Two new anharmonic forms for the Debye–Waller factor, aimed at modelling

curvilinear and asymmetric motion, have been introduced. These forms permit

the refinement of structures with these types of anharmonic motion using a

small number of additional parameters. Molecular-dynamics-derived numerical

probability density functions (PDFs) have been used to assess the merit of these

new functions in real space. The comparison is favourable particularly for the

curvilinear PDF based on a parabolic coordinate system change of a trivariate

Gaussian distribution. The initial results also suggest that high-order even terms

from the Gram–Charlier series may be important for modelling methyl-group

libration. The molecular-dynamics data sets provide useful insights into the

nature of anharmonic thermal motion. Addressing the problem in real space

allows intuitive PDFs to be developed but numerical methods may be necessary

for these methods to be implemented in refinement programs as an analytical

Debye–Waller factor cannot always be obtained.

1. Introduction

The Debye–Waller factor is one of the most important

ingredients in a successful crystal structure refinement. It is

formally defined as the Fourier transform or characteristic

function of the three-dimensional probability density function

(PDF), PðuÞ, that describes where an atom spends its time in

space (Johnson, 1970; Castellano & Main, 1985; Kuhs, 1992). It

can have contributions from disorder and systematic errors

but our interest in the present work is its primary role:

modelling the thermal motion of atoms. While there have been

many advances in crystallographic technology, the majority

of crystal structure refinements use a Debye–Waller factor

devised over 50 years ago. This is despite the fact that

numerous, more advanced forms have been developed in the

intervening time. Traditionally, the development of these more

advanced approaches has focused on the functional form of

the Debye–Waller factor, giving generic and widely applicable

methods. In this work we aim to illustrate how more specific,

phenomenological models of thermal motion can be devel-

oped using the results of molecular-dynamics simulations. To

achieve this we focus on modelling the intuitively more

accessible form of the real-space PDF rather than the

reciprocal-space Debye–Waller factor. In doing this the data

could be fitted better, with fewer parameters than generic

methods, leading to more accurate positional parameters.

The majority of small-molecule single-crystal studies

determine six anisotropic displacement parameters (ADPs)

which define the covariance matrix, U, of an atom’s motion

about its mean position, ra, which is also directly refined as

part of the structure-factor equation. In addition to the mean

position, it is also possible to determine a most probable

position for each atom, rp, which denotes the maximum (or

mode) of its probability density function (Johnson, 1969). The

six ADPs can be used to define a harmonic Debye–Waller

factor (Kuhs, 1992; Johnson, 1969)

P̂PðQÞharm ¼ exp �
1

2
QTUQ

� �
; ð1Þ

which is the Fourier transform of a trivariate Gaussian PDF:

PðuÞharm ¼
½detðU�1Þ�

1=2

ð2�Þ3=2
exp �

1

2
uTU�1u

� �
: ð2Þ

The Gaussian or harmonic approximation is widespread in

small-molecule crystallography and depictions of crystal
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structures often use surfaces of constant probability, which for

the Gaussian case are ellipsoidal in shape.

It has long been known that the harmonic approximation,

while capturing most of the effect of thermal motion, can have

its deficiencies. The harmonic modelling of librational motion

of a molecule can lead to shorter intramolecular bond lengths

than are physically reasonable (Cruickshank, 1956). This is

because the mean atomic position moves towards the centre

of libration, while the most probable position (the maximum

of the probability density) remains at the more physically

reasonable value. The mean and most probable positions for a

harmonically modelled atom must coincide so the Debye–

Waller factor is incapable of modelling the thermal motion

properly. This leads not only to spurious geometries but also to

incorrect intensities and poorer agreement factors. Similar

issues arise from the asymmetric motion of atoms.

Numerous forms for the Debye–Waller factor have been

devised to model librational and asymmetric motion accu-

rately. The majority of these methods are based on series

expansions of the harmonic Debye–Waller factor using poly-

nomials or spherical harmonics. The Edgeworth (Johnson,

1969) and Gram–Charlier (Zucker & Schulz, 1982) methods

focus on the statistical interpretation of PðuÞ. The one-particle

potential (OPP) method (Willis, 1969) is based on the rela-

tionship between the PDF/Debye–Waller factor and the

effective potential that an atom experiences, and has been

formulated using polynomials (Willis, 1969; Tanaka &

Marumo, 1983) and also spherical harmonics (Kurki-Suonio et

al., 1979). Other methods have been devised to model specific

types of motion including librational motion upon an arc of a

circle (Willis & Pawley, 1970; Pawley & Willis, 1970).

The most widely used methods are the statistical and OPP

ones. The advantage of using series expansions is a high

degree of flexibility. However, this flexibility comes at a cost.

The harmonic Debye–Waller factor requires six parameters

per atom whereas the anharmonic methods can require

anywhere from 16 to more than 60 parameters per atom. The

generic nature of these approximations and the resultant cost

in terms of parameters stem from a lack of independent

information on the nature and effect of anharmonic motion.

Many of the anharmonic series expansions are not always

convergent, leading to difficulties in assessing the convergence

of the fit properly.

In situations where experiment alone cannot provide

sufficient information, it is now common to turn to theoretical

methods. Molecular dynamics (MD) is a powerful technique

for exploring the dynamic behaviour of chemical systems. We

have applied it previously to determine corrections to

experimental crystal structures that convert the basic time-

averaged atomic positions to equilibrium values (Reilly et al.,

2007). In addition, the MD simulation can be used to deter-

mine numerical PDFs, free of an approximation of their

mathematical form.

In the preceding paper (Reilly et al., 2011) we have looked

at the different positional parameters and the effect of the

PDF’s functional form on the structures determined by

diffraction experiments. In the present study we use the

numerical PDFs to investigate two new forms of PDF (and

Debye–Waller factor), comparing them to the traditional

Gram–Charlier (GC) approach. The following section outlines

the simulation and modelling approach used to determine and

fit the numerical PDFs, while x3 outlines the GC method and

x4 discusses orientating a PDF/Debye–Waller factor along

particular directions to reduce the number of significant

parameters. The two new PDFs for librational and asymmetric

motion are discussed in xx5 and 6, respectively, and the

application of these models to a selection of molecules is

presented in x7.

2. Methodology

2.1. MD simulations

The results of three MD simulations on crystallographic

models are used in the present work. The first system is the 1:1

adduct of urea and phosphoric acid (UPA), which features a

short, strong hydrogen bond with the shared migratory proton

possessing an asymmetric, egg-shaped PDF, at least at 150 K.

Details of the MD simulations are given in the preceding

paper (Reilly et al., 2011). The second system is deutero-

nitromethane, chosen as a simple system possessing almost

free rotation of a methyl group [discussed in Reilly et al., 2010,

2011]. The third system is the 2:1 adduct of dimethylurea and

oxalic acid (DMUOX), also chosen for methyl-group free-

rotation behaviour. Details of the simulations performed for

DMUOX are as follows. Gaussian plane-wave (GPW) density

functional theory (DFT) (Lippert et al., 1997) MD simulations

of phase I of DMUOX (Pulham, 2009) were performed using

the CP2K program (VandeVondele et al., 2005). To simulate

the periodic nature of the crystal structure correctly a

3 � 1 � 1 supercell was modelled using periodic boundary

conditions. The electronic wavefunction was represented in

real space using double-Gaussian basis functions with polar-

ization functions, while plane waves were used in reciprocal

space to represent the electron density. A density cutoff

energy of 4000 eV was used. Valence–core interactions were

modelled using GPW-optimized analytical pseudopotentials

(Goedecker et al., 1996; Hartwigsen et al., 1998; Krack, 2005).

A Nosé–Hoover chain (Nosé, 1984; Hoover, 1985) was used

to regulate the temperature at 350 K during a Born–

Oppenheimer MD simulation with a time step of 0.55 fs. Data

were collected for 21 ps. Initial analysis of the trajectory

showed essentially free rotation of the methyl groups. For

brevity, only the H atom marked by an asterisk in Fig. 1 is

discussed here.

2.2. Analysis

The MD trajectories were analysed using Fortran code to

calculate the time-averaged mean position and covariance

matrix (the six unique Uij values), as well as one-, two- and

three-dimensional numerical PDFs for each atom. More

details are given in Reilly et al. (2011).

The fitting of the numerical PDFs to specific analytical

functions in direct space was carried out using the Mathema-
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tica computer program (Wolfram Research Inc., 2007). It is

convenient to have a measure of how well a particular function

fits the numerical PDFs. This is defined in a similar manner to

the R factor in crystallography:

R ¼

P
jPnðuÞ � PfðuÞjP

PnðuÞ
� 100; ð3Þ

where Pn is the numerical (or observed) PDF and Pf is the

model or fitted PDF. By definition Pn must be positive over all

space and so there is no need to take its modulus. For those

points at which Pf is less than zero Pf has been set equal to

zero in equation (3). The summation is taken over data points

on a cubic grid centred on the atom’s mean position, but only

those points where probability density is ‘observed’ (i.e.

Pn 6¼ 0) in the MD simulation have been included in the

summation, as is normally the case for the crystallographic R

factor. For nitromethane the grid consisted of 2003 data points

with a spacing of 0.015 Å. For the other molecules a smaller

grid of 1003 points (with spacings of 0.024 Å for UPA and

0.04 Å for DMUOX) was used.

In normal crystallographic usage, a good or acceptable

value for the R factor is a value less than 10%. Here, however,

the R factor should only be taken as a measure of the relative

qualities of the fits of two or more models to a particular MD

data set, since any high-frequency noise present in the

numerical data set (which arises as a result of the binning

process or a short trajectory) will adversely affect it. The

fitting process, which focuses on the broad, low-frequency

features of the distribution, should not be affected. For this

reason, a low-pass Fourier filter has been used to aid the

visualization of the numerical data sets; the reported R-factor

values, however, were calculated using the unfiltered data sets,

since the removal of the high-frequency noise would affect all

the models used to the same degree.

3. Gram–Charlier series

The GC approach is one of the most widely used methods in

anharmonic refinements and has been recommended by a

number of authors (Trueblood et al., 1996; Kuhs, 1992; Zucker

& Schulz, 1982). It will therefore be used as the benchmark for

the new PDFs detailed in xx5 and 6. The method involves an

expansion of the harmonic PDF using high-order quasi-

moments (Kuznetsov et al., 1960), cijkl..., and Hermite poly-

nomials, Hijkl...:

PGCðuÞ ¼ PðuÞharm

� 1þ
1

3!
cijkHijkðuÞ þ

1

4!
cijklHijklðuÞ þ . . .

� �
; ð4Þ

where PðuÞharm is a standard trivariate Gaussian PDF and

indices that are repeated twice are implicitly summed over

(from 1 to 3). The linear and quadratic polynomials are

omitted as they can be correlated with the mean and the

covariance matrix. The corresponding Debye–Waller factor is

P̂PGCðQÞ ¼ P̂PharmðQÞ

� 1� icijkQiQjQk þ cijklQiQjQkQl þ . . .
� �

: ð5Þ

The odd-order terms skew the distribution, while the even-

order terms affect its ‘peakedness’ or physical extent. The GC

series’ flexibility has seen it used to model disorder and split-

atom systems (Kuhs, 1983). Despite its repeated use, the GC

series does have some drawbacks. There are ten third-order

and 15 fourth-order parameters. In some cases, even higher-

order terms might be necessary. In addition to requiring many

more parameters than the harmonic approximation the GC

series PDF is not strictly speaking a true PDF: the polynomial

nature of the expansion means that there can be regions of

negative (and therefore meaningless) probability.

4. Orientation of anharmonic PDFs

In our analysis of the numerical PDFs in Reilly et al. (2011)

we employed GC series centred and orientated so that Uij ¼ 0

ði 6¼ jÞ with the longest principal axis directed along the x axis

and the shortest along the z axis. The required transformation

matrix to diagonalize U is its eigenvector matrix, which can be

easily determined numerically or analytically (Kronenburg,

2004). The fitting process is much faster when the covariances

are zero as the GC and other PDF formulae are simpler. In

addition, two-dimensional plots of the PDFs are easier to

interpret when they are orientated along the principal axes.

For normal crystallographic use the Hermite polynomials of

the GC series are defined with the standard covariance matrix,

U, having non-zero off-diagonal elements. The skewing,

bending etc. behaviour of the polynomials that results from

using this covariance matrix is not directed along the crystal-

lographic axes or any particularly significant directions unless

symmetry or the covariances dictate that this be the case. This

orientation and approach are suitable for generic anharmo-

nicity or speculative refinements of higher-order terms.

For some situations it is possible to guess, based on chemical

intuition, when anharmonicity may be important and even

what form this anharmonicity might take. We might expect a

significant degree of curvilinear motion perpendicular to the

rotational axis of a methyl group and asymmetry in the PDF of

a terminal atom or a migratory proton. Both effects have

been seen in our MD simulations of nitromethane, UPA and

DMUOX. For such systems it may be useful to replace the

generic basis vectors of the GC PDF as usually defined by ones
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Figure 1
Molecular structure of the 2:1 adduct of dimethylurea and oxalic acid.



oriented along specific directions. This sort of approach has

been used before for the OPP method (Tanaka & Marumo,

1983). The benefit of changing the orientation of the PDF is

that fewer Hermite polynomials, and therefore parameters,

may be required to model the anharmonicity. Such a re-

orientation will not always be valid, especially when there is a

possibility for coupling or mixing of different vibrational

motions.

In our simulations of d3-nitromethane the anharmonicity in

the D atoms is clearly along the largest principal axis with a

PDF that is both curved and skewed. We have calculated the

third-order GC fit to the PDF of the D1 atom of nitromethane

at 15 K using a GC series defined along the crystallographic

axes (the standard GC formulation) and along the principal

axes of the harmonic approximation (as we have done

previously for visualization and analysis purposes). For this

comparison, the distributions have both been centred on the

numerical mean as the standard GC PDF expressions are far

more complex if the mean is non-zero. (In a crystallographic

refinement the ‘mean’ is fitted separately from the Debye–

Waller factor.) The resulting third-order quasi-moments for

both models are given in Table 1. All ten of the standard GC

series quasi-moments are large and significant as the jcijk=�cijk j

values show. In comparison the oriented distribution has only

three large values, c111, c112 and c113. The remaining seven

quasi-moments are at least an order of magnitude smaller and

their corresponding contributions to the probability function

are negligible compared to the other three.

As we have used an orientated frame of reference we can

associate the quasi-moments with specific contributions. For

example, without plotting any density maps, we know that H111

skews the PDF along the longest principal axis. At higher

temperatures all of the cijk values become more significant but

the c111, c112 and c113 values still give the largest contributions,

being more than an order of magnitude bigger than the other

values.

In many cases the transformation of the GC PDF into a

non-crystallographic basis may offer no benefits but it is clear

from Table 1 that for some situations it may reduce the

number of parameters. Performing the transformation so that

the basis vectors coincide with the harmonic principal axes

of thermal motion requires no extra parameters. A useful

example of such a transformation is given by Tanaka &

Marumo (1983), and rules and mathematics for transforming

the coordinate system of the Hermite polynomials (and indeed

other crystallographic quantities) are discussed elsewhere

(Rowicka et al., 2004; Giacovazzo et al., 2002).

5. Curvilinear PDFs

For molecular crystals the most manifest form of anharmonic

motion is librational or other curvilinear motion. The GC

series can model curvature using its Hiij or Hijj terms. In Table 1

the large and significant c112 and c113 terms indicate that the

effect of the third-order parameters is to bend the longest axis

(axis 1). The density contribution of a Hermite polynomial to

the overall distribution is given by PðuÞharm � cijk...HðuÞijk...:
Fig. 2(a) shows an anharmonic GC PDF and Fig. 2(b) shows

the corresponding difference density distribution.

5.1. Parabolic coordinate system

As well as perturbing a Cartesian Gaussian PDF with

polynomials we might also consider a change of the coordinate

system from a Cartesian one to a curved one. In particular,
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Table 1
Third-order quasi-moments (in Å3) for the general and orientated fits of
the D1 atom of d3-nitromethane at 15 K.

The pre-factor and multiplicities required for use in a crystallographic
refinement have been omitted.

General Orientated

cijk jcijk=�cijk j cijk jcijk=�cijk j

c111 0.000114 100 �0.000593 48
c222 �0.000381 277 0.000006 5
c333 0.000025 113 �0.000001 2
c112 �0.000155 52 0.000524 41
c122 �0.000542 166 0.000059 9
c133 �0.000184 213 0.000018 6
c113 0.000550 376 0.001314 140
c123 0.001457 530 0.000061 9
c223 0.000896 550 0.000046 21
c233 �0.000211 238 �0.000008 5

Figure 2
Probability density maps of (a) the anharmonic distribution PðuÞharmð1 þ
H122Þ, (b) ½PðuÞanharm;GC � PðuÞharm�, (c) an anharmonic distribution
using the parabolic coordinate change ûu2 ¼ u2 þ 0:1u2

1 and (d)
½PðuÞanharm;para � PðuÞharm�. The harmonic distribution, PðuÞharm, is propor-
tional to expf1=2½�ðu2

1=U11Þ � ðu2
2=U22Þ�g, where U11 ¼ 1 and U22 ¼ 0:2.

The u1 axis is vertical; dark probability densities indicate negative
contributions [or zero density in (a) and (c)] while lighter ones indicate
positive contributions. The units on the axes are arbitrary.



librational motion could be represented as having a circular,

parabolic or higher-order even polynomial. We consider a

parabolic transformation of the coordinates, u, of a trivariate

Gaussian:

ûu1 ¼ u1

ûu2 ¼ u2 þ ku2
1

ûu3 ¼ u3 þ k0u2
1; ð6Þ

where k and k0 are suitable bending constants. The effect of

this transformation is to move a point lying on the plane

u2 ¼ 0 to one lying on the parabolic cylinder u2 ¼ ku2
1 and

likewise to move a point on the plane u3 ¼ 0 to one on

u3 ¼ k0u2
1. For simplicity we can formulate the PDF in a

coordinate system where Uij ¼ 0 when i 6¼ j; the methods

referenced in the previous section can be used to give a

general PDF, which takes the form

PðûuÞ ¼
½detðU�1Þ�

1=2

ð2�Þ3=2

� exp �
1

2

u2
1

U11
þ
ðu2 þ ku2

1Þ
2

U22
þ
ðu3 þ k0u2

1Þ
2

U33

� �� 	
:

ð7Þ

The resulting parabolic transformation takes the form shown

in Fig. 2(c). Fig. 2(d) shows the corresponding density

contribution. It gives the desired curving effect. A PDF of the

form given in equation (7) might be a better approximation

than the GC for a librating atom because the density contri-

bution is a better model of motion along the arc of a circle,

which is a reasonable approximation for the torsional motion

in nitromethane for small amplitudes. The Hermite poly-

nomial (Fig. 2b) changes sign twice in moving parallel to the

longest axis (the u2 axis), adding and subtracting density near

the mean for u1 > 0, while it removes density further away,

whereas the parabolic PDF is a natural first-order approx-

imation to the circular motion (Fig. 2d). To incorporate

parameters representing the mean we can use a PDF of the

form

PðûuÞ ¼
½detðU�1Þ�

1=2

ð2�Þ3=2
exp

�
�

1

2

�
ðu1 � xÞ

2

U11

þ
½u2 þ kðu1 � xÞ2 � y�2

U22
þ
½u3 þ k0ðu1 � xÞ2 � z�2

U33

	�
;

ð8Þ

where x ¼ ðx; y; zÞ represents the mean when k ¼ k0 ¼ 0.

5.2. Mean and variance

One of the strengths of the Gaussian, GC and Edgeworth

series is that the mean and variances of the model distribution

are directly determined as fitting parameters. One conse-

quence of the parabolic PDF is that the mean and variance

terms from a normal Gaussian distribution no longer corre-

spond to the actual mean and variances of the distribution.

Instead they must be found by using the equation for the non-

centred moments of a PDF:

hun
i i ¼

R1
�1

un
i PðûuÞ du: ð9Þ

For n ¼ 1 equation (9) gives the mean, so for a PDF of the

form given by equation (8) it can be shown that

u1 ¼ x

u2 ¼ y� kU11

u3 ¼ z� k0U11: ð10Þ

For n ¼ 2 equation (9) gives the variance plus the square of

the mean. Then, combining equations (9) and (10) yields

variances of

u2
1 ¼ �

2
1 ¼ U11

u2
2 ¼ �

2
2 ¼ U22 þ 2k2ðU11Þ

2

u2
3 ¼ �

2
3 ¼ U33

þ 2k02ðU11
Þ

2: ð11Þ

Naturally, when k or k0 is zero then x and U have their usual

significance as the mean and covariance matrix of the distri-

bution.

5.3. Structure factor

To use the parabolic PDF in a crystallographic refinement

we have to find its Fourier transform or characteristic function.

If we consider curvature only along a single direction then

letting k ¼ 0 in equation (8) gives a distribution of the form

PðûuÞ / exp

�
�

1

2

�
ðu1 � xÞ

2

U11
þ
ðu2 � yÞ

2

U22

þ
½u3 þ k0ðu1 � xÞ

2
� z�2

U33

	�
: ð12Þ

The characteristic function given by the expectation value of

expðix �QÞ [i.e. hexpðix �QÞi] is

P̂PðQÞ ¼ exp½iðyQ2 þ zQ3Þ� exp �
1

2
ðQ2

2U22
þQ2

3U33
Þ

� �

� exp ixQ1 �
iQ2

1U11

�2iþ 4k0Q3U11

� �
ð1þ 2iU11k0Q3Þ

1=2

 ��1

:

ð13Þ

The first two exponential terms represent the standard

harmonic parts of the Debye–Waller factor for the Q2 and Q3

directions. If k0 ¼ 0 then the usual Gaussian distribution is

obtained for the Q1 coordinate as well. For curvature in two

directions [i.e. like equation (8)] only the third and fourth

terms in equation (13) are affected:

P̂PðQÞ ¼P̂PðQ2;Q3Þharm exp ixQ1 �
iQ2

1U11

�2iþ 4U11ðkQ2 þ k0Q3Þ

� �

� ½1þ 2iU11ðkQ2 þ k0Q3Þ�
1=2

� 
�1
: ð14Þ

Equations (13) and (14) are of a suitable form and length for

use as analytical functions in refinement programs. Unfortu-

nately, when the parabolic PDF is augmented with Hermite

polynomials, as in equations (22)–(24), the analytical form for

the structure factor becomes long and complicated, but this

may not be an obstacle to their use in refinement programs.
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An alternative to using an analytical Debye–Waller factor is

to perform a numerical Fourier transform of the analytical

PDF. Such an approach has been suggested before for

methods such as the OPP approximation (Kuhs, 1992). It has

also been applied by Hohlwein (1981) to calculate structure

factors for orientationally disordered molecules. However, for

a variety of reasons the numerical approach has not been

widely tested. First, the analytical GC series is considered

superior to the OPP approximation, the main anharmonic

model that would benefit from a numerical approach.

Secondly, the computational effort in terms of coding and

more importantly the evaluation time would have been

prohibitive when the majority of the investigations of such

methods were carried out (in the 1970s and 1980s). Finally, it is

preferable to have an analytical form to determine the various

parameters directly in the refinement.

Neither of the second or third reasons is a substantial

obstacle to implementing a PDF such as the parabolic one

studied here. Harmonic refinements that took a significant

amount of computational time and effort ten years ago can

now be performed in minutes with modern codes and

computer hardware. An analytical form for the PDF is

preferable but the use of a numerical Debye–Waller factor

would permit the application of a wider variety of anharmonic

PDFs.

6. Skew-normal distribution

Curved PDFs only demonstrate one effect of anharmonic

thermal motion. Skewed or asymmetric PDFs are found in

MD simulations both for nitromethane (Reilly et al., 2010) and

for UPA. The GC series can effectively model asymmetry

using the diagonal odd-order polynomials such as H111. One

disadvantage of using polynomial expansions is that for such

odd-ordered polynomials there must exist a region of space

where the probability is negative. In many cases this region

will be far from the atom and also small in magnitude.

However, at high temperatures negative regions can be a

serious issue (Scheringer, 1988).

The skew-normal (SN) distribution was suggested by

Azzalini (1985) for modelling asymmetric data sets. For a one-

dimensional case it has the form

PðxÞSN ¼ 2PðxÞ�ðaxÞ; ð15Þ

where PðxÞ is a Gaussian with mean u and variance U, a is an

asymmetry constant and �ðaxÞ is a cumulative density func-

tion of the form

�ðaxÞ ¼
1

2
1þ erf

aðu� xÞ

ð2UÞ
1=2

� �� 	
; ð16Þ

where the error function, erfðxÞ, is given by

erfðxÞ ¼
2

�1=2

Zx

0

expð�t2
Þ dt: ð17Þ

The error function is limited to the range �1 to 1 and is shown

in Fig. 3. Being limited to that range ensures that a PDF of the

form of equation (15) cannot have any negative regions. The

multivariate SN distribution is defined differently depending

on the nature of the problem and whether or not correlation/

orientation parameters are necessary. For our purposes it

seems reasonable to start by skewing along the principal axes

of the distribution. The distribution then takes the form

(Gupta & Chen, 2004)

PðuÞSN ¼ PðuÞharm

Y3

i¼1

1þ erf
aiðxi � uiÞ

ð2UiiÞ
1=2

� �� 	
: ð18Þ

The form of equation (18) skews each direction of the PDF in

turn. This ensures that the distribution cannot have negative

probability. When the skew coefficients ai are zero we recover

the normal Gaussian distribution. The mean of the distribu-

tion is

ui ¼ xi þ ð2=�Þ
1=2�iðU

iiÞ
1=2; ð19Þ

with �1 ¼ ai=ð1þ a2
i Þ

1=2. The variance is given by

u2
i ¼ �

2
i ¼ Uii½1� ð2=�Þ�2

i �: ð20Þ

The characteristic function of the PDF given by equation (18)

is (Gupta & Chen, 2004; Azzalini, 2005)

P̂PðQÞ ¼ expðixQÞ exp �
1

2
QTUQ

� �Y3

i¼1

1þ erf iQi�iðU
ii
Þ

1=2

 �� 


:

ð21Þ

7. Application of anharmonic PDFs

Before applying the anharmonic PDFs introduced in the

preceding sections, it is important to note that curvilinear or

asymmetric motion will often not occur separately. Indeed, if

we examine the values in Table 1 it is apparent that the D1

PDF is skewed as well as being bent. Therefore, to model

anharmonic PDFs better, we could combine the different

anharmonic approaches. For instance, to model the D atoms of

nitromethane properly we can augment the parabolic PDF,

PðûuÞ, with a third-order Hermite polynomial

PðûuÞð1� c111H111Þ; ð22Þ

to produce a skewed parabolic PDF. It is quite likely that

fourth-order contributions will be significant too (cf. Table 2 of

Reilly et al., 2011) so one might also supplement the above

equation with the three main fourth-order Hermite poly-

nomials
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Figure 3
Graph of the error function erfðxÞ [see equation (17)].



PðûuÞ 1� c111H111 þ
P3

i¼1

ciiiiHiiii

� �
: ð23Þ

Two other combinations will be discussed in the following

section. The first combines equation (22) with even-order

Hermite polynomials

PðuÞ ¼ PðûuÞ

� ð1� c111H111 þ c1111H1111 þ c111111H111111

þ c11111111H11111111Þ;

ð24Þ

while the second is the same equation but with the third-order

Hermite polynomials replaced by an SN term:

PðûuÞ

�
1þ erf

aðx� u1Þ

ð2U11Þ
1=2

� �

þ c1111H1111 þ c111111H111111 þ c11111111H11111111

	
: ð25Þ

7.1. Nitromethane

The D atoms of nitromethane represent a perfect system for

studying modelling of the librational motion of methyl groups.

In addition, at higher temperatures the O atoms display

asymmetric motion, with egg-shaped PDFs obtained from the

MD simulations (Reilly et al., 2010). We begin by analysing the

D1 PDF at 15 K.

7.1.1. D1 atom. When fitted to the numerical PDF the

skewed parabolic PDF given by equation (22), with three

anharmonic parameters, gave an agreement factor of 13.6%.

The 16-parameter third-order GC fit (three means, three

variances and ten quasi-moments) to the D1 atom of nitro-

methane at 15 K gave an R factor of 14.2%, while the

trivariate harmonic model gave a fit of 19.3%. While the

difference between the GC and parabolic fits may not be that

large, it should be noted that the parabolic model has seven

fewer parameters. It is also clear that they both provide a

much better fit to the distribution than the harmonic model.

The full GC model has seven more parameters than the

parabolic model but if we restrict the GC series to the three

most important terms (cf. Table 1) then they have the same

number of parameters.

At 228 K the D1 atom shows significantly more anharmo-

nicity than at 15 K and a number of different models have

been employed to fit the numerical data; the results are

presented in Table 2 and two-dimensional xz distributions are

plotted in Fig. 4. Both the skewed parabolic and GC series give

significantly lower R factors compared to the harmonic model.

Both anharmonic distributions give similar values, which is

encouraging from the point of view of using the parabolic PDF

as it fits as well as the GC series with far fewer parameters.

A limited third-order GC series, with only the three most

important terms, performs slightly worse than the parabolic

model. The k and k0 values of the parabolic distribution are

�0.170 (1) and �0.216 (1) Å�1, respectively. While they have
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Table 2
Comparison of the various fits employed to model the numerical PDFs
obtained from MD simulations at 15 and 228 K of some of the atoms of
d3-nitromethane.

See the text for details of the limited GC series used. (Note that the
orientation of the model PDF is fixed to coincide with the harmonic principal
axes, with the result being that there are three fewer parameters, namely the
covariances, than would normally be required.)

Atom Model Parameters
R factor
(%)

15 K
D1 Harmonic 6 19.3
D1 Equation (22) 9 13.6
D1 Third-order GC series 16 14.2
D1 Limited third-order GC series 9 14.6
D1 Limited third-order GC series

with error function
9 14.4

228 K
D1 Harmonic 6 30.3
D1 Third-order GC series 16 22.5
D1 Limited third-order GC series 9 23.6
D1 Equation (22) 9 22.2
D1 Fourth-order GC series 19 17.9
D1 Equation (23) 12 18.3
D2 Fourth-order GC series 19 17.1
D2 Equation (23) 12 16.5
D2 Equation (24) 12 16.3
D2 Equation (25) 12 17.3
O1 Harmonic 6 14.9
O1 Third-order GC series 16 12.8
O1 Equation (18) 9 14.4
O1 Diagonal third-order GC series 9 14.4

Figure 4
Two-dimensional xz PDFs of the D1 atom of nitromethane at 228 K: (a)
Fourier-filtered numerical PDF, (b) third-order GC fit, (c) skewed
parabolic PDF and (d) fourth-order skewed parabolic PDF. (The x axis
represents the longest principal axis of thermal motion, while z is the
shortest axis.)



dimensions of Å�1 it is important to remember the value of Uii

they are associated with. As U33 is much smaller than U22 the x

axis will be bent mostly in the z direction.

However, as Figs. 4(b) and 4(c) show, while both of these

anharmonic distributions are bent, neither matches the large

asymmetry seen in the numerical PDF. They also extend much

further out than the numerical distribution. In the preceding

paper (Reilly et al., 2011) it was shown how the fourth-order

GC parameters were important for representing the size of the

D1 PDF. By including the three diagonal fourth-order

Hermite polynomials in the GC model and the parabolic

model [equation (23)] we obtain significantly smaller R factors

(see Table 2) and better visual agreement. The two-

dimensional xz PDF of the fourth-order parabolic fit is

presented in Fig. 4(d). Mathematically, the third- and fourth-

order Hermite polynomials are not correlated and so in

principle should work independently of each other. However,

the high-probability region in the centre of the numerical

distribution is so broad compared to a harmonic distribution

that without fourth-order polynomials the third-order poly-

nomial cannot skew the distribution without increasing the R

factor. Visually, the agreement could still be better; the extent

of the PDF remains too large. The parabolic PDF produces a

more realistic curvature but evidently requires more even-

order Hermite polynomial terms to produce a better fit. Of the

three diagonal terms only the H1111 term seems important. Its

value of�6:64 ð1Þ � 10�3 Å4 is two orders of magnitude larger

than the two other values. Examining the xy, xz and yz two-

dimensional distributions it is clear that the vast majority of

the anharmonicity is in the xz plane. In two dimensions there

are only five unique fourth-order terms. Adding the H1111,

H1133, H1333 and H1113 Hermite polynomials to the expansion in

equation (22) reduces the R factor slightly but affects the

visual appearance of the distribution only marginally,

suggesting that the H1111 term is the most important in this

type of system and that a full fourth-order refinement might

not improve things greatly. Adding in the sixth-order diagonal

terms also slightly reduces the parabolic PDF agreement R

factor but again the general shape is still very similar to that in

Fig. 4(d).

As well as considering the models in terms of R factors, we

can compare the positions and bond lengths that result from

them. Of particular importance is how well the anharmonic

distributions correct for the bond-shortening effect of libra-

tional motion. The three-dimensional maximum of the fourth-

order GC PDF, relative to the mean, is (0.1875, �0.0090,

�0.0296), while the fourth-order parabolic PDF (Fig. 4d) has a

three-dimensional maximum at (0.3078, �0.0009, �0.0343).

The difference is quite large. Fitting a third-order GC series to

the C atom and using the parabolic maximum for the D1 atom,

a most probable C—D1 bond length of 1.084 Å is obtained,

which compares well with the re value of 1.089 Å. The GC

series fit for the D1 atom gives a bond length of 1.074 Å. The

time-averaged bond length, which is what would be measured

using a normal harmonic refinement, is 0.991 Å, showing that

both methods correct for the vast majority of the librational

shortening effect.

7.1.2. D2 atom. For the D1 atom of nitromethane the

parabolic PDF of equation (23) consistently produced good

agreement with the numerical data set. This is in part because

the direction of curvature matches the principal axes of

thermal motion quite well. The D2 atom of nitromethane has a

much more skewed PDF (Fig. 5a), which should favour the

GC series over the parabolic PDF. Again, a number of

different models have been used to fit the numerical data set

and these are presented in Table 2. Surprisingly, the parabolic

distribution still outperforms the GC distribution despite the

skewed nature of the numerical PDF. Figs. 5(b) and 5(c) show

the GC and parabolic two-dimensional xz PDFs. A small

region of negative probability is clearly visible for the fourth-

order GC series. The potential for such regions of negative

probability is one of the main disadvantages of PDFs based on

polynomial expansions, although in some cases it is acceptable

as long as the regions are small (Scheringer, 1988; Kuhs, 1992).

Noting that the H1111 term was the only fourth-order term to

be significant for the D1 atom, we have fitted a distribution

with the corresponding sixth- and eighth-order terms [equa-

tion (24)], which gives a slightly smaller R factor but hardly

any improvement in the visual fit. Refining a third-order GC

series with the fourth, sixth and eighth-order x-axis terms also

leads to little improvement over the fit shown in Fig. 5(b). The

ra value is 0.977 Å; the probable C—D2 bond length with the

fourth-order parabolic model is 1.081 Å, while the eighth-

order GC value is 1.068 Å. The parabolic distribution again is

closer to the equilibrium value, which in this case is 1.089 Å.
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Figure 5
Two-dimensional xz PDFs of the D2 atom of nitromethane at 228 K: (a)
Fourier-filtered numerical PDF, (b) fourth-order PDF GC fit and (c)
fourth-order skewed parabolic PDF. The dark purple region indicates the
lowest probability, which in the case of (b) is negative. (The x axis
represents the longest principal axis of thermal motion, while z is the
shortest axis.)



Both anharmonic treatments capture the majority of the

thermal-motion correction.

Given the problems with negative regions that result from

using a polynomial expansion, we have also used the SN

distribution, in the form of equation (25), to model the D2

atom. The R factor for this model is comparable to that for the

fourth-order GC series. As the error function is contained

within the GC series expansion it is still possible for the

distribution to have negative regions but the limited range of

the error function reduces its contributions to negative regions

in the PDF. For systems with large amplitudes the error

function may consequently be more useful than the Hiii

functions.

7.1.3. O1 atom. At higher temperatures the simulated PDF

of the O1 atom of nitromethane is egg or pear shaped. This

should represent a good test case for the SN distribution.

Three different models, harmonic, GC and SN, have been

fitted to the numerical distribution at 228 K; the resulting R

factors are presented in Table 2. The SN distribution is only

slightly better than the harmonic model, whereas the GC fit is

appreciably better. The SN model also gives a distribution that

does not match the visual appearance of the numerical

distribution very well. However, a GC series PDF with only

the three Hiii terms produces an R factor identical to the SN fit.

This suggests that the SN distribution is as effective as the GC

series at skewing the distribution but that in some cases

the off-diagonal GC polynomials are important as well. The

biggest contributions from off-diagonal elements are from the

H122, H133 and H233 polynomials, showing that some ‘bending’

of the distribution occurs.

7.1.4. Positive-definite GC series. The error function may

represent a useful way to define a PDF based on polynomial

perturbations that cannot have negative regions. We may

define a PDF of the form

PðuÞSN ¼ PðuÞharmf1þ erf½f ðuÞ�g; ð26Þ

where f ðuÞ is an appropriate polynomial function. If f ð�uÞ

¼ �f ðuÞ then equation (26) represents a true PDF (Azzalini,

2005) and therefore must have a characteristic function. The

third-order Hermite polynomials satisfy this condition when

centred on the mean position. At 15 K the D1 atom of

nitromethane required only three such polynomials to fit. If

we let f ðuÞ ¼ c111H111 þ c112H112 þ c113H113 then we obtain an

R factor of 14.4%, which is slightly better than the 14.6%

obtained by using them directly (i.e. without using the error

function). The anharmonic parts of the resulting PDF

obtained using the two types of perturbation are plotted in Fig.

6. This shows similar contour lines for both but with different

scales.

Further investigation is obviously required but a PDF of the

form of equation (26) may prove useful in crystallography,

particularly at high temperatures, where the negative prob-

ability density inherent to the GC series can be an issue.

7.2. 1:2 Adduct of dimethylurea and oxalic acid

The methyl groups of DMUOX provide a useful data set to

validate the results obtained by applying the parabolic PDFs

[equations (22)–(24)] derived to model the PDFs of the D

atoms of nitromethane. The PDF of a methyl-group hydrogen

was fitted using the limited fourth-order GC series and

equation (24) in the same way as for nitromethane. As with

nitromethane the fourth-order parameters were essential to

model the asymmetry of the distribution realistically. The

numerical and parabolic distributions are shown in Fig. 7. The

parabolic fit appears to be quite good but the underlying

numerical distribution is particularly noisy because of the

smaller data set collected in the DFT–MD simulation. This

hinders detailed comparison of the parabolic and GC fits but it

is clear that the parabolic model is capable of reproducing the

general behaviour of the methyl group.

7.3. Urea–phosphoric acid

For the O atom of nitromethane the SN distribution was

clearly inferior to the GC series in modelling the distribution’s

asymmetry. The UPA migratory proton exhibits similar

asymmetry. At 150 K an agreement index of 27.5% is obtained
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Figure 6
Two-dimensional xz difference maps of the fit to the D1 atom PDF
of nitromethane at 15 K: (a) c111H111 þ c112H112 þ c113H113 and (b)
erfðc111H111 þ c112H112 þ c113H113Þ. (Note the difference in scale.)



by using the SN distribution. The large value is a result of the

high-frequency noise present because the DFT–MD simula-

tion collects far fewer data than the force-field MD used for

nitromethane. A GC series with only the three Hiii poly-

nomials gives essentially the same agreement factor. The full

third-order GC series model (with ten polynomials) does give

a slightly better fit of 27.1% but all three refinements yield

similar values for the probable position. The SN distribution

shown in Fig. 8 successfully reproduces the egg shape of the xz

distribution.

Comparing the SN distribution’s performance for the

nitromethane O1 atom and the UPA H atom it is likely that

the SN distribution will be as good at skewing a distribution as

the third-order Hiii parameters. Whether the bending Hermite

polynomials are important will probably depend on the profile

of the distribution and the correlation between motion in

different directions. Asymmetry that represents the complete

skewing of the PDF from its centre may be better approxi-

mated using skew functions only, whereas distributions that

are more harmonic near the maximum may require the flex-

ibility of the full GC series.

8. Conclusion

The MD-derived numerical PDFs of a variety of atoms in

different molecules have been modelled using a number of

different analytical functions. In doing so the numerical data

sets have shown their use in providing realistic models for

developing new forms for the Debye–Waller factor. This offers

the possibility not only to determine more physically mean-

ingful structures but also to get more information on atomic

displacements from diffraction data.

Two new forms of PDF have been fitted to the numerical

PDFs. The first, based on a parabolic coordinate system,

models the curvilinear motion of the hydrogen atoms in

nitromethane and DMUOX as well as the GC series but with

fewer parameters. In nitromethane, the parabolic distribution

gave most probable C—D bond lengths that were closer to the

equilibrium value than the GC model values. Irrespective of

whether the third-order GC series or parabolic PDF was used

to model the curvature, it was essential to include fourth-order

GC terms (primarily the Hiiii terms) to model the asymmetry

of the PDF. To cut down on the number of GC parameters it

has been suggested that the Hermite polynomials employed be

defined in the harmonic thermal motion coordinate system.

A skew-normal PDF based on the univariate form intro-

duced by Azzalini (1985) has also been used to model

anharmonic distributions. In this limited study it has been

found to be as effective at skewing a PDF as the Hiii terms of

the GC series but in some cases the flexibility of the full GC

series permits one to model the data better. However, the SN

distribution may provide a useful basis for a ‘true’ PDF that

has no spurious negative regions – a potentially significant

advantage over existing methods at high temperatures.
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Nosé, S. (1984). J. Chem. Phys. 81, 511–519.
Pawley, G. S. & Willis, B. T. M. (1970). Acta Cryst. A26, 260–262.
Pulham, C. R. (2009). Personal communication.
Reilly, A. M., Habershon, S., Morrison, C. A. & Rankin, D. W. H.

(2010). J. Chem. Phys. 132, 094502.

Reilly, A. M., Morrison, C. A. & Rankin, D. W. H. (2011). Acta Cryst.
A67, 336–345.

Reilly, A. M., Wann, D. A., Morrison, C. A. & Rankin, D. W. H.
(2007). Chem. Phys. Lett. 448, 61–64.

Rowicka, M., Kudlicki, A., Zelinka, J. & Otwinowski, Z. (2004). Acta
Cryst. A60, 542–549.

Scheringer, C. (1988). Acta Cryst. A44, 343–349.
Tanaka, K. & Marumo, F. (1983). Acta Cryst. A39, 631–641.
Trueblood, K. N., Bürgi, H.-B., Burzlaff, H., Dunitz, J. D.,

Gramaccioli, C. M., Schulz, H. H., Shmueli, U. & Abrahams, S. C.
(1996). Acta Cryst. A52, 770–781.

VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing,
T. & Hutter, J. (2005). Comput. Phys. Commun. 167, 103–128.

Wolfram Research Inc. (2007). Mathematica. Version 6.0. Wolfram
Research Inc., Champaign, Illinois.

Willis, B. T. M. (1969). Acta Cryst. A25, 277–300.
Willis, B. T. M. & Pawley, G. S. (1970). Acta Cryst. A26, 254–259.
Zucker, U. H. & Schulz, H. (1982). Acta Cryst. A38, 563–568.

research papers

356 Anthony M. Reilly et al. � Molecular-dynamics simulations. II Acta Cryst. (2011). A67, 346–356

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tn5017&bbid=BB34

